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In this contribution a modification of the Pecora-Carroll [Phys. Rev. Lett. 64, 821 (1990)] one-way (or
drive-response) synchronization method is suggested, such that both drive and response have the same dimen-
sionality. As a result, it is possible reproduce the driving signal with a single connection, increasing, thus, the
number of potential connections of a given system. The main features of the method presented in this work are
discussed with an application to the Rossler and Lorenz models [O. E. Rossler, Phys. Lett. A 57, 397 (1976);
E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963)], including the possibility of designing different chaotic receivers
to be used in the field of secure communications and the setup of an array of chaotic units in which several

possible connections are allowed for.
PACS number(s): 05.45.+b

Several recent studies have shown the possibility of syn-
chronizing chaotic systems [1,2], although, due to their sen-
sitive dependence on the initial conditions, at first sight this
may appear to be against common sense. In particular,
Pecora and Carroll (PC) [1] have considered the situation of
unidirectional coupling, in which a chaotic signal from a
drive system is used to force a second response system. In
the PC method a subsystem of the drive, that will be com-
mon between the two systems, will be used to make the
response synchronize with the drive. The stability of the syn-
chronized state can be written in terms of the corresponding
transverse Lyapunov exponents, which measure the growth
of small perturbations of the differences between the two
systems.

A very interesting situation [3] is obtained when the re-
sponse system, with respect to a given drive, acts as the drive
of a second response system, this connection being called
cascading. Cascading two PC subsystems in this way allows
one to regenerate the driving input signal. It is in this sense
that it is possible to show [3] that this system can act as a
chaotic filter, potentially useful in the field of secure commu-
nications [4] (see, however, Ref. [5]). In its simplest version
the idea is to use a chaotic signal to mask the information to
be transmitted, the latter bearing a small fraction of the
power spectrum, and this is an alternative to the classical
noise masking procedure. The receiver should have the ap-
propriate chaotic filter, which in this setting can be obtained
by using two cascaded chaotic subsystems.

Cuomo et al. [4] have implemented a Lorenz chaotic filter
that could be useful in the field of secure communications.
These authors were able to design a receiver circuit that is a
single three-dimensional chaotic circuit comprising the cas-

x r

cade —(y ’,z’)L(x",z”), which has, in principle, an overall
dimension of four. The device is implemented by noticing
that variable z” in the second subsystem does not influence
x", but rather performs its own dynamics, or in other words,
variable z does not enter into x. The result is that one can
write the usual expression for a Lorenz [6] chaotic circuit
acting as the drive (transmitter),
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X1=0(y1—x1), Yy1=Rx1—y1—x121, Z1=x1y1—bzy, (1)

while the response (receiver) circuit can be written in the
form [4],

X3=0(y2—X3), Y2=Rx1=y,—X12z;, Z;=x1y,—bz;. (2)

The parameters have the usual meaning, and it is to be no-
ticed that the driving signal x; appears in y, and z,, while
x, appears in x,, and, thus, one has some kind of hybrid
dynamical system.

One could also think of designing a more general cascade
acting as a nonlinear information processing unit, but this is
difficult to achieve if one strictly sticks to the PC method.
The reason is that in a cascade of low-dimensional chaotic
systems the connectivity is limited because not all the pos-
sible subsystems of a given chaotic system are stable from
the viewpoint of synchronization, and in order to build such
a cascade any two contiguous connections must be different
[3].

Thus, and within the examples considered in Ref. [1], in
the case of the Rossler [7] model there is a single stable
subsystem, namely (x,z), while in the case of the Lorenz [6]
model both (x,z) and (y,z) subsystems are stable. Thus, the
Rossler system cannot be a candidate to build a chaotic filter,
for which one needs a cascade such that the driving signal is
regenerated (although one could obtain the same effect
through the use of a suitable modification of the method [8]).
Moreover, if one wishes that the chaotic filter is compact,
i.e., that it has the same dimensionality as the drive, such as
is the case of the Lorenz circuit of (2), it is necessary that one
of the variables (z in the case of the Lorenz system) does not
appear in the evolution of the input variable to the cascade
[x in (2)].

The aim of this work is to introduce a strategy consisting
in a generalization of the PC method, that should allow one
to design in a systematic way a response system with the
same dimension as the drive and that yields the same result
obtained within the original PC method with a cascade of
two subsystems. One of the most interesting potential appli-
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FIG. 1. Synchronization and cascading of four connected Lorenz sys-
tems (1) with the same parameters o= 10, b= 8/3, and R=28 according to
connection scheme (3), in which each system of the cascade injects variable
y in the next one: the y; signals produced by each unit are reported in
(a)—(d). Quantities plotted are dimensionless in all figures.

cations is the design of complex arrays formed by chaotic
units. As with a single connection one has nontrivial output
for all the variables, this implies that one can connect many
low-dimensional circuits in different ways, including simul-
taneous connections. The main idea of the method is to gen-
eralize the coexistence of different signals in the same cha-
otic circuit, allowing the driving signal to enter at one or
more terms in the evolution equations of the response, as
happens for x; and x, in the circuit described by (2). Thus,
the suggestion is to introduce the driving signal in a single
term of the evolution equations of the response (although
more terms can be also considered), e.g., o y{(¢) in the con-
nection reported in (3). It is possible to find some analogy
between this kind of construction and the suggestion in Ref.
[9] of splitting the response system into two parts, one linear
and the other nonlinear, entering the drive signal only in the
latter.

In order to understand better the basic idea of the method,
it will be illustrated in the case that several Lorenz systems
(1) are connected through variable y. By looking at the equa-
tions it is possible to see that y enters generically at four
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different places in the evolution equations. If one drives a
receiver circuit injecting y in the term corresponding to the
X, equation, then it is possible to show that the connected
systems will indeed synchronize. Figure 1 shows the case of
a cascade of four Lorenz models, described by the following
equations, where the signal that is driving the dynamics of
each response system and that comes from the corresponding
drive is underlined for clarity (also in the rest of the text):

x1=0(y1—x1), y1=Rx1—y1—x121, Z;=x1y1— bz,
X,=0(1(t) —x3), Y2=RXy—yr—X325, Z,=X5y,—bz,,
x3=0(y(t) —x3), y3=Rx3—y3;—Xx3z3, Z3=x3y3—bzs,

x3=0(y3(t) —x4), Ya=Rx4—ys—X424, Z4=X4y4— bz,

©)

the four systems exhibiting perfectly synchronized behavior.

The stability of a drive-response couple in the synchro-
nized state can be formulated in a quite general way by
studying the stability of the synchronization manifold
(x,=x,, y,=y1, and z,=2z;) against perturbations trans-
verse to the manifold. The stability condition implies that all
possible perturbations die off, which implies that for small
perturbations the (linearized) evolution equation for
e=(e;,ep,e3)=(x,—x1,Y2—Y1,22—21) has eigenvalues
whose real part is negative. For the connection given in (3) it
can be shown that the following linearized equation for the
time evolution of the relative errors between any two con-
tiguous systems is obtained:

é —o¢ 0 0\/[e
e=| e |=| (R-2) -1 -x||e|=Ze. (4
é3 y p -b [}

This is analogous to the error growth equation for the Lorenz
system, except for the fact that a O entry appears in the same
place in which the driving signal enters.

Due to the nonlinear character of the vector flow that one
tries to synchronize, the Z matrix in (4) does not have con-
stant coefficients, and, thus, the discussion must be done in
terms of Lyapunov exponents, which in this work have been
obtained by using the method of Ref. [10]. In this context,
the idea of the method presented here is to set to zero the
appropriate terms in Z such that one only gets negative trans-

TABLE 1. Transverse Lyapunov exponents for various connec-
tions of two Lorenz and Rdssler systems using the method sug-
gested in this work. When the connection is explicitly reported in
the text, the corresponding equation number is given.

System Connection Lyapunov exponents
Lorenz: o=10 oy(t), Eq. 3) (—1.8003,—1.8663,— 10.0000)
b=8/3, R=28 Rx(t) (—3.9513,—4.0420,—5.6734)
—xz(t) (0.0000, —2.6667, — 11.0000)
Rossler: ay(t), Eq. (5) (—0.0583,—0.1243,—4.2432)

a=b=0.2, c=4.6
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FIG. 2. Synchronization of two connected Rossler systems [7] with the
same parameters a=0.2, b=0.2, and c¢=4.6, according to connection
scheme (5) in which y,(¢) is injected in the response system: (a) y, signal
from the driver (transmitter) system including a square pulse s(¢) shown in
(c); (b) induced y, signal in the response (receiver); (c) square pulse signal

s(t) added to y, in (a); (d) retrieved signal s’ (¢)=|y,—y,| as filtered by the
response.

verse Lyapunov exponents, although it is very difficult to
know a priori which connection will synchronize. All the
nonpositive transverse Lyapunov exponents for connections
between two identical Lorenz and Rossler systems are gath-
ered in Table I.

As a second application, a connection that may act as a
chaotic filter based on Rossler’s model of spiral chaos [7] has
been set up. The original PC synchronization method yields
only one stable subsystem, while within the present method
two Rossler systems will synchronize if y is injected in the
ay term of y in the receiver,

x1=—(y1+z1), y1=x1+ay,, z1=b+z1(x;—c),

X3= = (y2+2z3), y2=x3+ayq(t), z,=b+z3(x2—c). (5)

The application to the design of a chaotic filter for y po-
tentially useful in the field of secure communications can be
seen from Fig. 2, in which a step function indicates how one
could transmit information in digital form (codified in the
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form of Os and 1s). Thus, Fig. 2(c) represents the signal s(¢)
added to the drive, while in Fig. 2(d) the retrieved signal
s'(¢) (that appears to be significatively different from the
rest state) is shown. From the form in which the method is
implemented it can be shown that, if the signal added to the
chaotic drive does not vary too rapidly in a time compared to
the highest transverse Lyapunov exponent, the response sys-
tem will synchronize with the sum of both signals. Thus, Fig.
2(d) represents only a transient behavior under the presence
of the perturbation. Thus, in order that one can retrieve the
information in a significative way, the duration in time of the
pulses to be transmitted is limited by the highest Lyapunov
exponent: the lower it is in absolute value the longer the
pulse can be.

One of the most interesting potential applications of the
present connection scheme is to arrays of chaotic systems,
because it is possible to obtain a highly complex network in
which several connections among the different units coexist.
This is one of the features observed in the brain, and these
complex networks could act as useful nonlinear information
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FIG. 3. Connection of four chaotic Lorenz systems according to scheme
(6) shown in (a)—(d) (see Fig. 1 for the parameters). System in (a) is linked
through connection R x to systems in (b) and (c), while system in (d) is
linked through connection —x z to systems in (b) and (c). Systems in (b)
and (c) exhibit mutual synchronization, although not with (a) and (d).
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processing units, that could eventually outperform classical
fixed point artificial neural networks. In Fig. 3 one such set-
ting is shown, namely, one in which four Lorenz systems are
connected in the form

x1=0(y1—x1), y1=Rx;—y1— X121, 2;=x3y;—bzy,

X2=0(y2—%2),Y2=Rx1(2) —y2—x224(2), Z22=x2y,% — bz,
x3=0(y3—x3), Y3=Rx;(t) —y3—x324(¢), 23=x3y3—bz3,
X4=0(Y4—X4), Ya=RX4—Y4— X424, 24=X4y4—bzs. (6)

Thus, the first system is linked through connection
R x(t) to the second and third systems, while the fourth
system is linked through connection —xz(t) to the second
and third systems. This is an example in which two systems
receive, each, signals from two other systems, and then,
some kind of competition may occur regarding the effects of
the two signals. The result is that the second and third sys-
tems become synchronized one to each other, exhibiting a
different behavior than the first and fourth systems, although
they are not connected directly. One could analyze the sta-
bility of this kind of setting by a generalization of the stabil-
ity analysis outlined before Eq. (4), although the calculations
are more complex now due to the fact that two different
chaotic systems need to be followed.

The conclusion of this work is that the method put for-
ward by Pecora and Carroll (PC) [1], and that allows syn-
chronization of chaotic systems by one-way coupling, can be
easily extended to the case in which there is no subsystem in
common between the two connected systems. This can be
achieved by introducing a signal from the driver into a pre-
cise term of the response, allowing regeneration of the input
signal with a single connection. Among the possible uses of
this variant of the original method, one has the design of
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chaotic filters potentially useful in the field of secure com-
munications in which a deterministic signal to be transmitted
is masked with a chaotic signal produced by a chaotic sys-
tem. One could design the receiver system to be formally
identical to the transmitter, except for the fact that the com-
pound signal to be filtered is introduced at some given place
of the circuit. This allows a compact design of the receiver
unit without the need of designing it as a cascading of two
systems as in the PC scheme. In this work, a chaotic filter
using two Rossler units is suggested, making it possible to
use for this purpose a system with a single stable subsystem
in the PC sense. The practical implementation of the present
idea in a circuit such as the one devised by Cuomo et al. [4]
would consist in the injection of the driving signal in the
appropriate part of the circuit through an operational ampli-
fier (the use of a resistance would yield mutual driving [11]).
Another use of the present suggestion is the possibility of
cascading a large number of low-dimensional systems with
different possible connections without reducing the dimen-
sionality of the response systems, including discrete maps.
This kind of connection can be applied to the case where the
units represent model neurons. One of the features of the
brain is that a large number of neurons are connected in
many different ways, and its computation power appears to
stem from this property. The method introduced in this work
presents the advantage of allowing one to set up a network
with a virtually unlimited number of circuits that are con-
nected in many different ways. Thus, these arrays of chaotic
systems might be useful as information processing systems
that would work by synchronizing one to each other, mim-
icking the behavior observed in physiological studies.
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